

Yashavantrao Chavan Institute of Science, Satara (Autonomous)

Lead College, Karmaveer Bhaurao Patil University

Reaccredited by NAAC (3rdCycle) with 'A+' grade (CGPA 3.57).

ISO 9001:2015 Certified

Bachelor of Science

Part - II

ELECTRONICS

Syllabus

to be implemented w .e. f. June, 2024 NEP 2020

Sr.No.	Course Category	Course Code	Name of Course
1	Major I	BET 231	Fundamentals of Analog Circuit design
2	Major II	BET 232	Computer Organization and 8085
			Microprocessor
3	Major Practical I	BET 233	Experimental studies of analog circuit design Lab (Hardware)
4	Major Practical II	BET 234	Computer Organization and 8085
			Microprocessor Lab (Software and
			Hardware)
5	Minor I	BET235	Wave-Shaping Circuits and Timer IC
6	Minor Practical I		Minor Practical I :Wave-Shaping Circuits
		BEP236	and Timer IC(Hardware)
7	VSC	BEPVSC 1	Electronics Technical Writing,
			Documentation and Presentation Essentials
			Skill
8	SEC	BEPSEC3	Programming Skills for Computational
			Electronics Applications
9	AEC	English I	
		English II	
10	VEC	BETVEC 2	Electronics for Environmental awareness

Course Structure B. Sc II Semester III

Sr.No.	Course Category	Course Code	Name of Course
1	Major I	BET 241	Operational amplifier and its applications
2	Major II	BET 242	Fundamentals of 8051 microcontroller
3	Major Practical I	BEP 243	Operational amplifier Lab (Hardware)
4	Major Practical II	BEP 244	8051 microcontroller Lab (Hardware and Circuit Simulation Software)
5	Minor I	BET245	Fundamentals of 8051 microcontroller
6	Minor Practical I	BEP246	Minor Practical II:8051 microcontroller Lab (Hardware and Circuit Simulation Software)
7	VSC	BEPVSC 2	Digital Skills for Electronics Business
8	SEC	BEPSEC4	Advance Programming Skills for Computational Electronics
9	AEC	English III	
		English VI	
10	CC	BETCC 2	

Course Structure B.Sc II Semester IV

<mark>Major Syllabus</mark>

STRUCTURE OF COURSE: B.Sc II (Semester III)

Sr.	SUBJECT TITLE		Theory			Practical	
No.		Course No. & Course Code	No. of lectures per week	Credits	Course No. & Course Code	No. of lectures Per week	Credits
1	Fundamentals of Analog Circuit design	Course -V: BET231	6	2	Course III: BEP 233	4	2
2		Course -VI: BET232		2	Cource IV: BEP 234		2

STRUCTURE OF COURSE: B. Sc II (Semester IV)

Sr. No.	SUBJECT TITLE		Theory			Practical	
		Course No. & Course Code	No. of lectures per week	Credits		No. of lectures Per week	Credits
1	Operational amplifier and its applications	Course -VII: BET241	6	2	Course Course V: BEP 243	4	2

Syllabus

2 Fundamentals of 8051 Course -VIII: microcontroller BET242	2 Course Course VI : BEP 244	2
--	---------------------------------------	---

		Internal	l Exam		Practical		Submission	
	ESE		ISE-II				Seminar +	Total
		ISE-I			Exam	Journal	Student Performance	
Course	30	5	5	Practical-	25	5	5	
V				III(A)				150
Course VI	30	5	5	Practical IV(B)	25	5	5	

B.Sc. II : Evaluation structure

Semester III

Semester IV

		Internal	Exam		Practical		Submission	
	ESE	ISE-I	ISE-II		Exam	Journa 1	Seminar + Student Performance	Total
Course VII	30	5	5	Practical -III(A)	25	5	5	150
Course VIII	30	5	5	Practical IV(B)	25	5	5	

Structure and Title of Courses of B. Sc. Course:

* B. Sc. II Semester III *

Course Number	Course Code	Course Name
V	BET 231	Fundamentals of Analog Circuit design
VI	BET 232	Computer Organization and 8085 Microprocessor
III	BEP 233	Major Practical I : Experimental studies of analog circuit design (Hardware Lab)
IV	BEP 234	Major Practical II: Computer Organization and 8085 Microprocessor Lab (Software and Hardware)

Semester III

Course V: BET231: Fundamentals of Analog Circuit design

- 1. Understand Comprehension with wave shaping circuits and its Advantages in electronics systems.
- 2. Study ability of Analyzing and Designing BJT switching circuit for various application.
- 3. Study the designing Sweep Generators.
- 4. Understanding of facts, ideas about Timer IC and its applications.

Credits (Total Credits 2)	SEMESTER-III BET 231 Fundamentals of Analog Circuit design	No. of hours per unit/credits
UNIT - I	Wave shaping Circuits	(7)
	A) Linear wave shaping circuits:	
	Differentiator - High pass R C circuits, Response to	
	triangular input & square wave, Numerical problems based	
	designing.	
	Integrator Low pass RC circuit –Response to square input	
	&rectangular input, Numerical problems-based designing.	
	B) Nonlinear wave shaping:	
	Clippers: Positive clipper, Negative clipper, Combinational	
	clipper, Clampers: Positive clampers, Negative clampers,	
	Combinational clampers, voltage doublers and triplers,	
	Numerical problems-based designing.	
UNIT - II	Multivibrators and Amplifiers	(10)
	A) Transistorized Multivibrators and its types: -Circuit	
	Diagram, Operation, timing equations& applications of	
	following: Astable multivibrator, Monostable	
	multivibrator, Bistable Multivibrator, Schmitt Trigger,	
	Numerical problems based on timing Equations.	
	B) Power Amplifiers: Class A, Class B, Class C and their	
	Comparisons, RC coupled amplifier, RF Tuned Amplifiers	
	C) Feedback Amplifiers- Concept of feedback, Negative and	
	Positive feedback, General Characteristics of feedback	

	circuits, advantages and disadvantages of negative	
	feedback and positive feedback, voltage, current feedback	
	amplifiers(Series and Shunt)	
UNIT - III	Sweep Generators and Oscillators	(7)
	A) Voltage time base generator:	
	Exponential sweep circuit, Transistor switch sweep generator,	
	UJT switch sweep generator	
	Miller sweep generator, Bootstrap sweep generator	
	B) Current sweep generator: - Transistorized	
	C) Oscillators:- Barkhausen Criteria for Oscillators, Phase	
	Shift Oscillator, Colpitts Oscillator, Hartley Oscillator,	
	Wien bridge Oscillator and Crystal oscillator	
UNIT - IV	Timer IC and its applications	(6)
	A) Timer IC555: Features, Pin Diagram, Block Diagram,	
	B) Applications: Astable Multivibrator, Monostable	
	Multivibrator, PWM, PAM, PPM, FSK	
	C) PLL IC 565: Introduction Block diagram, Pin diagram.	

- 1 Design various wave shaping circuits for different applications.
- 2 Utilize transistor as a switch for Wave-Shaping Circuits.
- 3 Analyze sweep generators in electronics circuits.
- 4 Utilize Timer IC applications

Reference Books:

- A Text Book of Wave-Shaping Circuits and 555 Timers-R. S. Sedha (S. Chand & Co), Multicolour Edition 3/e, 2018
- 2. Linear Integrated Circuits-D Roy Choudhari, 5th Multicolour Edition, 2018
- 4. Basic Electronics- Bernard Grob, 8th Edition 2010
- 5. Electronics Devices and Circuits: An Introduction- Allen mottershed, 11th Edition 2015
- 6. A Course in Circuit Analysis- M.L. Soni, 4th Edition, Dhanpat RaiPublications, 2016
- 7. Linear Circuits- M. E. Valkenburg an Kinariwala, 1982

Syllabus

Semester III

Course V: BET232: Computer Organization and 8085 Microprocessor

- 1. Understand Microcomputer Fundamentals
- 2. Comprehend 8085 Microprocessor Architecture
- 3. Study the Assembly Language Programming for 8085
- 4. Develop Skills in 8085 Programming and Interfacing.

Credits	SEMESTER-III	No. of hours
(Total	BET 232	per unit/credits
Credits 2)	Computer Organization and 8085 Microprocessor	
UNIT - I	Microcomputer Organization	(6)
	Basic components of microcomputer: CPU, ALU, Memory	
	System: Program memory, Data memory, Data Storage (Type	
	of RAM and ROM), Memory organization and addressing,	
	Memory Map, memory hierarchy, registers, internal and	
	external memory, and concept of Virtual Memory, I/O devices,	
	input, and output ports	
	Types of I/O Addressing: I/o Mapped I /O and memory	
	mapped I/O).	
UNIT II	8085 Microprocessor Architecture	(10)
	Main features of 8085. Block diagram and Pin-out diagram of	
	8085. Bus structure: Data, address, and control buses.	
	Registers, ALU, Stack memory, Program counter, Flag	
	register.	
UNIT - III	Assembly Language programming 8085	(7)
	Instruction classification, addressing modes of Instructions,	
	Instruction set (Data transfer, Arithmetic, logical, branch, and	
	control instructions).	
	Timing and Control circuitry: Machine Cycle, Instruction	
	Cycle, Timing states. Instruction cycle, Timing diagram of	
	MOV and MVI. Hardware and software interrupts.	
UNIT IV	Programming of 8085	(7)
	Subroutines, delay loops Programs for: Addition, Substraction,	
	Multiplication, Division, Block transfer.	
	Introduction of interfacing ICs (Qualitative only):	
	Programmable Peripheral Interface: Intel 8155, 8253, 8255,	
	programmable Interrupt Controller: Intel 8259	

- 1 Describe and differentiate the roles of key microcomputer components and their interactions within the system.
- 2 Explain the architecture and functioning of the 8085 microprocessors
- 3 Write and analyze assembly language programs for the 8085-microprocessor using appropriate addressing modes, instructions, and control flow mechanisms.
- 4 Apply knowledge of programmable peripheral interfaces and interrupt controllers in designing simple microcomputer systems.

- W. Stallings, Computer Organization and Architecture Designing for Performance, 8th Edition, Prentice Hall of India ,2009
- Ramesh Gaonkar, Microprocessors architecture, programming and Applications, Wiley Eastern Ltd. (2002), 2nd Edition
- 3. D. V. Hall, "Microprocessors and Interfacing", Tata McGraw Hill (2005), revised 2nd edition
- 4. P. K. Ghosh and P.R Sridhar, 0000 to 8085 microprocessor, John Wiley and Sons, 2nd Edition
- 5. R. Thegarajan and S. Dhanpal, Microprocessor, and its Application, New Age International Private Ltd, 1st Edition
- 6. K. Udaya Kumar and B.S. Uma Shankar, The 8085 Microprocessor: Architecture, Programming, and Interfacing", Pearson Education
- Walter Triebel and Avtar A.Singh, 8088 and 8086 Microprocessors: Programming, Interfacing, Software Hardware and Applications, Pearson Education, 4th edition

Semester III

Practical III: BEP233: Fundamentals of Analog Circuit design Lab (Hardware)

- 1. Understand and relate concepts learned in classroom to the real-world situations
- 2. Study ability of designing practical circuits through conceptual, analytical stages.
- 3. Study of scientific, analytical skills about Analog Electronics.
- 4. Understand and design wave shaping circuits, Multivibrators, sweep generators, Oscillators.

Credits (Total Credits 2)	Semester IIINo. ofPractical IIIhours perBEP233: Experimental studies of analog circuit design (Hardware Lab)(30)					
	1	Study RC circuit as differentiator and High pass filter.				
	2	Study RC circuit as an integrator and Low pass filter.				
	3	Study of clipping and clamping circuits.				
	4	Design Voltage Doublers circuit.				
	5	Study Switching char. of a transistor.				
	6	Design transistorized astable multivibrator.				
	7	Study transistorized monostable multivibrator.				
	8	Study transistorized bistable multivibrator.				
	9	Study IC 555 Timer Application				
	10	Study IC 555 Square wave generator Application				
	11	UJT switch sweep generator				
	12	Miller sweep generator				
	13	To Study of Phase Shift Oscillator				
	14	To Study of Colpitts Oscillator,				
	15	To Study of Hartley Oscillator,				
	16	To Study of Wien bridge Oscillator				
	17	To Study of Crystal oscillator				
	18	To Study the characteristics of RF tuned amplifier				
	19	To study class A amplifier				
	20	Comparative study of negative and positive feedback				

- 1 Utilize and Demonstrate advance Lab Instruments
- 2 Demonstrate modulation and demodulation techniques.
- 3 Design various wave shaping circuits for different applications.
- 4 Design different types of switching circuits, Oscillators,feedback circuits for various applications.

- A Text Book of Wave-Shaping Circuits and 555 Timers-R. S. Sedha (S. Chand & Co), Multicolour Edition 3/e, 2018
- 2. Linear Integrated Circuits-D Roy Choudhari, 5th Multicolour Edition, 2018
- 4. Basic Electronics- Bernard Grob, 8th Edition 2010
- 5. Electronics Devices and Circuits: An Introduction- Allen mottershed, 11th Edition 2015
- 6. A Course in Circuit Analysis- M.L. Soni, 4th Edition, Dhanpat RaiPublications, 2016
- 7. Linear Circuits- M. E. Valkenburg an Kinariwala, 1982

Practical IV: BEP234: Computer Organization and 8085 Microprocessor

Lab (Software and Hardware)

- 1. Apply Fundamental Arithmetic Operations
- 2. Analyze and Implement Advanced Arithmetic Techniques
- 3. Evaluate and Execute Control Flow Structures
- 4. Synthesize Data Manipulation Strategies

Credits (Total Credits	B	Semester III Practical III EP234: Computer Organization and 8085 Microprocessor	No. of hours per (30)
2)		Lab (Software Simulation Lab)	
	1	Addition and subtraction of numbers using direct addressing	mode
	2	Addition and subtraction of numbers using indirect addressin	g mode
	3	Multiplication by repeated addition	
	4	Division by repeated subtraction.	
	5	Handling of 16-bit Numbers.	
	6	Use of CALL and RETURN Instruction.	
	7	Block data handling.	
	8	Study of Logical Instructions	
	9	Use of Rotate instructions	
	10	BCD to Binary Conversion	
	11	Binary to BCD Conversion	
	12	BCD to seven segment conversion	
	13	BCD to ASCII Conversion	
	14	ASCII to BCD Conversion	
	15	Addition and subtraction of two BCD numbers	
	16	Arrange an array of data in ascending order	
	17	Arrange an array of data in descending order	
	18	Find largest number in an array of data	
	19	Find smallest number in an array of data	
	20	Program to transfer data block / Exchange data block	

- 1 Demonstrate proficiency in performing arithmetic operations using different addressing modes, applying knowledge to solve numerical problems effectively.
- 2 Evaluate and implement arithmetic operations using iterative methods, showcasing the ability to break down problems and apply appropriate algorithms.
- 3 Create Structured Programs with Subroutines
- 4 Apply logical instructions, rotation operations, and data conversion methods (BCD to binary, ASCII to BCD) to manipulate and transform data efficiently within assembly language programs.

- W. Stallings, Computer Organization and Architecture Designing for Performance, 8th Edition, Prentice Hall of India ,2009
- Ramesh Gaonkar, Microprocessors architecture, programming and Applications, Wiley Eastern Ltd. (2002), 2nd Edition
- 3. D. V. Hall, "Microprocessors and Interfacing", Tata McGraw Hill (2005), revised 2nd edition
- 4. P. K. Ghosh and P.R Sridhar, 0000 to 8085 microprocessor, John Wiley and Sons, 2nd Edition
- 5. R. Thegarajan and S. Dhanpal, Microprocessor, and its Application, New Age International Private Ltd, 1st Edition
- 6. K. Udaya Kumar and B.S. Uma Shankar, The 8085 Microprocessor: Architecture, Programming, and Interfacing", Pearson Education
- Walter Triebel and Avtar A.Singh, 8088 and 8086 Microprocessors: Programming, Interfacing, Software Hardware and Applications, Pearson Education, 4th edition

<mark>Minor Syllabus</mark>

Cource Structure for Bsc II (Semester III)

	The	eory		Practical				
Course	Course	Lecture	Credits	Course	Course	Course	Lecture	Credits
Title	Code	per			Title	Code	per	
		week					week	
Wave-	BET	2	2	Practical	Minor	BEP	2	2
Shaping	235			Ι	Practical	236		
Circuits					Ι			
and								
Timer IC								

Structure and Title of Courses of B. Sc. Course:

* B. Sc. II Semester III *

Course Number	Course Code	Course Name
V	BET235	Wave-Shaping Circuits and Timer IC
Lab I	BEP236	Minor Practical III: Wave-Shaping Circuits and Timer IC(Hardware Lab)

Semester III

Course VI: BET 235: Wave-Shaping Circuits and Timer IC

- 1. Understand Linear Wave Shaping Circuits
- 2. Explore Nonlinear Wave Shaping Techniques
- 3. Investigate Transistor Switching Circuits
- 4. Study Sweep Generators and Timer ICs

Credits	SEMESTER-III	No. of hours
(Total	BET 235	per unit/credits
Credits 2)	Wave-Shaping Circuits and Timer IC	
UNIT - I	Wave shaping Circuits	(7)
	A) Linear wave shaping circuits:	
	Differentiator - High pass R C circuits, Response to	
	triangular input & square wave, Numerical problems based	
	designing.	
	Integrator Low pass RC circuit –Response to square input	
	&rectangular input, Numerical problems-based designing.	
	B) Nonlinear wave shaping:	
	Clippers: Positive clipper, Negative clipper, Combinational	
	clipper, Clampers: Positive clampers, Negative clampers,	
	Combinational clampers, voltage doublers and triplers,	
	Numerical problems-based designing.	
UNIT - II	BJT Switching Circuits	(9)
	A) Transistor as a switch, Transistor Switching Times.	
	B) Transistorized Multivibrators and its types: -Circuit	
	Diagram, Operation, timing equations& applications of	
	following:-, Astable multivibrator, Monostable	
	multivibrator, Bistable Multivibrator, Schmitt Trigger,	
	Numerical problems based on timing Equations.	

UNIT - III	Sweep Generators	(7)
	A) Voltage time base generator:	
	Exponential sweep circuit, Transistor switch sweep generator,	
	UJT switch sweep generator	
	Miller sweep generator, Bootstrap sweep generator	
	B) Current sweep generator: - Transistorized	
UNIT - IV	Timer IC and its applications	(7)
	A) Timer IC555: Features, Pin Diagram, Block Diagram,	
	B) Applications: Astable Multivibrator, Monostable	
	Multivibrator, PWM, PAM, PPM, FSK	
	C) PLL IC 565: Introduction Block diagram, Pin diagram.	

- 1 Apply Knowledge of Linear Wave Shaping
- 2 Implement Nonlinear Wave Shaping Techniques
- 3 Design and Analyze Transistor Switching Circuits
- 4 Implement and Utilize Timer IC applications

- A Text Book of Wave-Shaping Circuits and 555 Timers-R. S. Sedha (S. Chand & Co), Multicolour Edition 3/e, 2018
- 2. Linear Integrated Circuits-D Roy Choudhari, 5thMulticolour Edition, 2018
- 4. Basic Electronics- Bernard Grob, 8th Edition 2010
- 5. Electronics Devices and Circuits: An Introduction- Allen mottershed, 11th Edition 2015
- 6. A Course in Circuit Analysis- M.L. Soni, 4th Edition, Dhanpat RaiPublications, 2016
- 7. Linear Circuits- M. E. Valkenburg an Kinariwala, 1982

Semester III

Lab I: BEP236: Wave-Shaping Circuits and Timer IC Lab (Hardware)

- 1. Understand Fundamental Concepts of RC Circuits
- 2. Study Nonlinear Circuit Techniques
- 3. Examine Transistor Characteristics and Multivibrators
- 4. Study Timer IC Applications and Modulation Techniques

Credits		Semester III	No. of hours per
		Lab I	(30)
(Total		Minor Practical -III	
Credits		BEP 236: Wave-Shaping Circuits and Timer IC Lab	
2)		(Hardware Lab)	
	1	Study RC circuit as differentiator and High pass filter.	
	2	Study RC circuit as an integrator and Low pass filter.	
	3	Study of clipping and clamping circuits.	
	4	Design Voltage Doublers circuit.	
	5	Study Switching char. of a transistor.	
	6	Design transistorized astable multivibrator.	
	7	Study transistorized monostable multivibrator.	
	8	Study transistorized bistable multivibrator.	
	9	Study IC 555 Timer Application	
	10	Study IC 555 Square wave generator Application	
	11	Design and test an Exponential Sweep Circuit using transistor	s and capacitors.
	12	Construct a Transistor Switch Sweep Generator and measure	the sweep rate.
	13	Implement a UJT (Unijunction Transistor) Switch Sweep Ger	nerator.
	14	Build and test a Miller Sweep Generator circuit.	
	15	Create and test a Bootstrap Sweep Generator using transistor c	onfigurations.
	16	Study Pulse Amplitude Modulation (PAM) .	
	17	Study Pulse Width Modulation (PWM).	

18	Implement Frequency Shift Keying (FSK) modulation.
19	Study of Amplitude Shift Keying
20	Design and simulate PLL applications such as frequency multiplication or phase- locked loop circuits.

- 1 Apply Fundamental Concepts of RC Circuits
- 2 Explore Nonlinear Circuit Techniques
- 3 Investigate Transistor Characteristics and Multivibrators
- 4 Design and Explain working of Timer IC 555 application.

Reference Books:

1. A Text Book of Wave-Shaping Circuits and 555 Timers-R. S. Sedha (S. Chand & Co), Multicolour Edition 3/e, 2018.

- 2. A Course in Circuit Analysis- M.L. Soni, 4th Edition, Dhanpat RaiPublications, 2016.
- 3. Linear Circuits- M. E. Valkenburg an Kinariwala, 1982
- 4. Basic Electronics- Bernard Grob, 8th Edition 2010

Rayat Shikshan Sanstha's

Yashavantrao Chavan Institute of Science, Satara (Autonomous)

Department of Electronics

Vocational Skill Course

Semester –III

Course Code: BEPVSC 1

Paper Name: Electronics Technical Writing, Documentation and Presentation Essentials Skill

- 1 Develop the ability to create, format, and edit documents efficiently using Microsoft Office/ LibreOffice/ Google Docs.
- 2 Mastering Collaborative Editing and Research Tools
- 3 Acquire Data Management and Analysis Skills
- 4 Learn Presentation Design and Delivery Skills

Credits		Semester III	No. of hours per	
(Total		Practical Paper – BEPVSC 1	(30)	
Credits	Т	Cechnical Writing, Documentation and Presentation Skills For		
2)		Electronics		
	1	Creating a New Document, Formatting Text and Paragraphs, I	nserting Images and	
		Links.		
	2	Bulleted and Numbered Lists, Inserting Headers and Footers,	Creating Tables.	
	3	Collaborative Editing, Research Tools, Setting up Page .		
	4 Working with Document Styles, Using Revision History, creating a Tab			
		Contents.		
	5	Adding Comments and Suggestions, Exploring Add-ons, Tra	acking Changes and	
		Accepting Edits .		
	6	Exporting and Downloading Documents, use of Templates .		
	7	Creating Forms and Surveys, Managing Page Breaks and Section	ions, Publishing and	
		Sharing .		
	8	Entering and Formatting Data, Using Basic Formulas .		
	9	Creating Charts and Graphs, Applying Conditional Formatting	g .	

10	Sorting and Filtering Data, use Data of Validation.
 11	Working with Formulas and Functions, Creating Pivot Tables and Pivot Charts.
 12	Importing External Data, Managing Multiple Sheets and Tabs.
13	Advanced Data Analysis Techniques, Data Cleaning and Transformation.
14	Creating and Sharing Forms, Protecting Sheets and Ranges.
15	Automating Tasks with Google Apps Script
16	Creating a New Presentation, Adding and Formatting Text, Inserting Images and Shapes.
17	Adding Audio and Video within a Microsoft Office /LibreOffice/Google Slides
18	Applying Animation Effects to Microsoft Office /LibreOffice/Google Slides
19	Collaborative Presentation, Delivery Practice Presentation
20	Exporting Slides, Use of Add-ons, Publishing and Sharing with a Microsoft Office /LibreOffice/Google Slides

- 1 Create, format, and edit documents proficiently using Microsoft Office, LibreOffice, or Google Docs.
- 2 Adept and develop at collaborating on documents and utilizing research tools to enhance productivity and quality of work.
- 3 Demonstrate competence in data entry, formatting, analysis, and visualization using spreadsheet software, enabling effective data-driven decision-making.
- 4 Designing presentations, incorporating multimedia elements, applying animation effects, and delivering impactful presentations using presentation software.

- Beskeen, David W., Carol M. Cram, Jennifer Duffy, and Lisa Friedrichsen. *Microsoft* Office 365 & Office 2019: Introductory. Cengage, 2019.
- 2 Holzner, Steven. *Google Docs 4 Everyone*. Que Publishing, 2009.
- 3 Purdy, Kevin. *LibreOffice Writer: The Ultimate Guide*. CreateSpace Independent Publishing Platform, 2011.

- 4 Alexander, Michael, and Richard Kusleika. *Microsoft Excel 2019 Bible*. Wiley, 2019.
- 5 Gradias, Michael. *Google Sheets for Excel Users*. Apress, 2019.
- 6 Moore, Mark. *Mastering PivotTables in Excel*. Apress, 2018.
- 7 Lambert, Joan. *Microsoft PowerPoint 2019 Step by Step*. Microsoft Press, 2018.
- 8 McQuade, Joel. *Google Slides: Up & Running*. O'Reilly Media, 2017.
- 9 Pratt, Philip, and Mary Z. Last. *Microsoft Office 365 & Access 2019 Comprehensive*.
 Cengage, 2019.
- Ferreira, James. *Google Apps Script: Web Application Development Essentials*. O'Reilly Media, 2014.

Rayat Shikshan Sanstha's

Yashavantrao Chavan Institute of Science, Satara (Autonomous)

Department of Electronics

Skill Enhancement Course

Semester –III

Course Code: BEPSEC 2

Paper Name: Scientific programming skills for Electronics

- 1 Understand Fundamental Concepts
- 2 Develop Problem-Solving Skills
- 3 Gain proficiency in Programming Constructs
- 4 Explore the importance of Modular Programming

Credits		Semester III	No. of
(Total		Practical Paper – BEPSEC 2:	hours per
Credits		Scientific programming skills for Electronics	(30)
2)			
	1	Write a "Hello, World!" program.	
	2	Declare and initialize variables of different data types (int, flo print their values.	oat, char) and
	3	Perform basic arithmetic operations (addition, subtraction, m division) on two numbers.	ultiplication,
	4	Use printf and scanf for formatted input and output.	
	5	Implement conditional statements (if, else if, else) to check largest of three numbers.	and print the
	6	Use loops (for, while, do-while) to print numbers, calculate t find the sum of natural numbers.	factorial, and
	7	Create programs to demonstrate array declaration, initial accessing array elements.	lization, and
	8	Implement programs for string operations such as s concatenation, length calculation, and comparison.	string copy,

9	Write a program to reverse a given string.
10	Find the occurrence of a character in a string.
11	Define and call a function to calculate the factorial of a number.
12	Implement functions to perform different arithmetic operations (addition, subtraction, multiplication, division).
13	Write a function to check whether a given number is prime or not.
14	Use function pointers to implement callback mechanisms.
15	Demonstrate pointer declaration, initialization, and accessing pointer values.
16	Write programs to perform pointer arithmetic.
17	Implement functions to swap two numbers using pointers.
18	Use dynamic memory allocation functions (malloc, calloc, realloc, free) to manage memory for arrays and structures. Define a structure to represent a student with attributes like name, roll number, and marks. Implement functions to manipulate student records.
19	Use nested structures to represent complex data structures.
20	Demonstrate the use of unions for memory efficiency.

- 1 Develop Simple Programs:
- 2 Expertise in Data Manipulation:
- 3 Understanding of Memory Management
- 4 Design and implement Modular Programming

1	King, K.N. C Programming: A Modern Approach. 2nd ed., W.W. Norton & Company, 2008.
2	Prata, Stephen. C Primer Plus. 6th ed., Addison-Wesley, 2013.
3	Deitel, Paul J., and Harvey Deitel. C: How to Program. 8th ed., Pearson, 2015.
4	Schildt, Herbert. C: The Complete Reference. 4th ed., McGraw-Hill Education, 2000.
5	Gaddis, Tony. Starting Out with C++: From Control Structures through Objects. 8th ed.,
	Pearson, 2014.

6	Oualline, Steve. Practical C Programming. 3rd ed., O'Reilly Media, 1997. (Note: This edition
	is slightly earlier but is a popular choice.)
7	Reek, Kenneth A. Pointers on C. Pearson, 1997. (Also slightly earlier but highly regarded.)
8	Kerrisk, Michael. The Linux Programming Interface: A Linux and UNIX System
	Programming Handbook. No Starch Press, 2010.
9	Robbins, Arnold, and Arthur B. Robbins. UNIX Systems Programming: Concurrency,
	Communication, and Threads. Prentice Hall, 2003.
10	Stevens, Richard W., Stephen A. Rago, and Linus Torvalds. Advanced Programming in the
	UNIX Environment. 3rd ed., Addison-Wesley, 2013.

Rayat Shikshan Sanstha's

Yashavantrao Chavan Institute of Science, Satara (Autonomous)

Department of Electronics

Skill Enhancement Course

Semester –III

Course Code: BETVEC 2

Paper Name: Electronics for Environmental awareness

Course Objectives: The students should be able to:

1. understand the environmental issues.

2. relate that laws made to safeguard the environment.

- 3. know importance of sustainable development.
- 4. correlate knowledge of sustainable development with Electronics sciences.

Credits (02)	VEC Course -II (BET-VEC-II): Environmental Awareness for Electronics Scientist	No. of hours per unit	
	Environmental issues		
	1.1Pollution (Air, Water and Land),		
	1.2 Fresh-water overuse,		
	1.3 Natural disasters,		
Unit I	1.4 Fuel and Energy shortage due to overuse,	10	
Unit I	1.5 Increase in wasteland,	10	
	1.6 Biodiversity loss,		
	1.7 Global warming and climate change (Causes and intensity of the problem),		
	1.8 role of Electronics science in creation of environmental issues		
	Environmental laws and ethics		
	2.1 Environmental Protection Act		
	2.2 Wildlife Protection Act		
Unit II	2.3 Forest Conservation Act	07	
	2.4 Prevention and Control of Pollution Act (Air, water and Land),2.5 From unsustainable to sustainable development,		
	2.6Responsibilities of an Environmentally aware citizen.		
Unit III	Sustainable Development Goals	07	

	3.1. Introduction to Sustainable Development Goals (SDGs)	
	3.2. Disaster Resilience and Early Warning Systems (SDG 1)	
	3.3. Agriculture and Food Security (SDG 2)	
	3.4. Water Management and Environmental Sensor (SDG 6)	
	3.5. Health Technologies and Well-being (SDG 3)	
	3.6. Smart Cities and Sustainable Urbanization (SDG 11)	
	Role of Electronics Sciences in meeting the sustainable development goals.	
	4.1. Energy Efficiency and Affordable Clean Energy (SDG 7)	
	4.2. Information and Communication Technologies (ICT) (SDG 4)	
Unit IV	4.3. Sustainable Manufacturing and Responsible Consumption (SDG 12)	06
	4.4. Climate Action and Environmental Monitoring (SDG 13)	
	4.5. Innovation, Research, and Partnerships for Sustainable Development (SDG 17)	
	4.6. Circular Economy and Electronics	

Course Outcomes: The students will be able to:

- 1. explain the causes of environmental issues
- 2. discuss concepts related to environmental laws and ethics.
- 3. discuss the sustainable development goals.
- 4. Compare and analyze the importance of Electronics sciences in meeting the sustainable development goals.

References Books:

1. https://fdp-si.aicte-india.org/download/HVBE_for_NEP2020.pdf

<mark>Major Syllabus</mark>

Semester IV

Structure and Title of Courses of B. Sc. Course:

* B. Sc. II Semester IV*

Course	Course	Course Name
Number	Code	
VII	BET 241	Operational amplifier and its applications
	241	
VIII	BET	Fundamentals of 8051 microcontroller
	242	
V	BEP	Major Practical I: Operational amplifier Lab (Hardware)
	243	
VI	BEP	Major Practical II:8051 microcontroller Lab (Hardware and Circuit
V I	244	Simulation Software)

Course VII: BET 241: Operational Amplifier and its Applications

- 1. Study Conceptual Knowledge of Operational Amplifier.
- 2. Understand and analyzing various applications of Operational Amplifier.
- 3. Study of various applications of Operational Amplifier.
- 4. Understand Basic Concept and techniques of Active filters.

Credits	SEMESTER-IV	No. of hours
(Total	BET 241	per
Credits 2)	Operational amplifier and its applications	unit/credits
UNIT - I	Basics of Operational Amplifier	(6)
	A) Differential amplifier: - basics, Circuit Diagram, and circuit	
	description only: DIBO,DIUO,SIBO, SIUO.	
	B) Ideal Op-Amp: Equivalent Circuit, Circuit Symbols and	
	Terminals, Block diagram, Characteristics.	
	C) Op-amp parameters: Input offset voltage, Input offset current,	
	Input bias current, Differential input resistance, Input capacitance,	
	Offset voltage adjustment range, Input voltage range, CMRR,	
	SVRR, Large signal voltage gain, Output voltage swing, Output	
	resistance, Output short circuit current, supply current, Power	
	consumption, Slew rate	
	D) Op- Amp IC- 741: pin diagram and function, Electrical	
	parameters	
UNIT - II	Op-Amp Configuration and Feedback Amplifiers	(8)
	A) Open Loop and closed loop configuration of op-amp comparison,	
	Virtual ground, virtual short concept	
	B) Circuit Diagram, operation, Equations and derivation for output:	
	Open loop configuration – Inverting, Non inverting, Close loop	
	configuration – Inverting, non inverting, Voltage follower,	
	Inverter (Sign changer), Inverting and non - inverting	
	configuration of Adders (summing amplifier, scaling Amplifier,	
	averaging amplifier), Subtractor.	

UNIT - III	Op-Amp. Applications	(8)
	A) Circuit Diagram , Operation, Equation and applications	
	:Integrator, Differentiator, Precision Rectifier(Half wave and Full	
	Wave), Voltage to current(V to I) converter, Current to voltage	
	(I to V) converter, Three op amp Instrumentation	
	amplifier(Circuit diagram, operation, advantages& application),	
	Inverting & non inverting Voltage comparator, Inverting & Non	
	inverting Zero crossing detector, Window	
	comparators(Detector), Schmitt Trigger, Comparison between	
	voltage comparator and Schmitt trigger.	
UNIT - IV	Waveform Generator and Active filters	(8)
	A) Op- amp as: an astable multivibrator, monostable multivibrator,	
	bistable multivibrator, Triangular waveform generator, Phase	
	shift oscillator using op- amp, Study of waveform generator IC	
	566 block diagram, pin diagram, simple circuit.	
	B) Active filters: Introduction, Classification of filters, Concept of	
	passive and active filters, Merits and demerits of active filters	
	over passive filters. Qualitative study: - cut off frequency, Pass	
	band, Stop band, center frequency, roll off rate, BW, Q factor.	
	Realistic and ideal response curve of LP, HP, BP, BP, notch filters,	
	Order of filter and Need of higher order filter.	

- 1 Understand parameters of Operational Amplifier.
- 2 Illustrate various applications using Operational Amplifier.
- 3 Design various applications using Operational Amplifier.
- 4 Utilize Operational Amplifier as filters.

- 1. Op-amp and -Ramakant Gaikwad, 11th Edition, 2015
- Operational Amplifiers and Linear Integrated Circuits, K. Lal Kishore, Pearson Education, 2016.
- 3. Op Amp Applications, Walt Jung, Pearson education, 2009
- 4. Operational amplifiers and Linear Integrated circuits, R. F. Coughlin and F. F. Driscoll, Pearson Education, 2001.
- 5. Integrated Electronics, J. Millman and C.C. Halkias, Tata McGraw-Hill, 2001.
- 6. Electronic Principals, A. P. Malvino, 6 th Edition, Tata McGraw-Hill,2003.
- 7. Op Amps for Everyone, Bruce Carter, 2nd Edition, Texas Instrument, 2020.

Course VIII: BET 242 : Fundamentals of 8051 Microcontroller

- 1. Study of Comprehension with microcomputer organization and 8051 family
- 2. Understand Factual and Conceptual Knowledge of 8051 microcontroller architecture.
- 3. Understand and familiarize with Instruction set and programming.
- 4. Study about I/O port, timer, counter and external interfaces programming.

Credits	SEMESTER-IV	No. of hours per unit/credits
(Total	BET 242	per unit/creatis
Credits 2)	Fundamentals of 8051 microcontroller	
UNIT - I	8051 microcontrollers	(6)
	Microcontrollers vs General Purpose Microprocessors. Microcontrollers for Embedded Systems, Criteria for Choosing a microcontroller, Overview of 8051 family members and its comparison –8052, 8031, 8751, AT89C51, DS89C4x0	
UNIT - II	8051 Architecture	(8)
	8051 Architecture: Features, Architectural block diagram, Accumulator and B register, Program Status Word (PSW) register, Program Counter Register, Data Pointer Register, Stack, I/O ports, Timers/Counters, Interrupts. Internal RAM Structure and Code ROM	
UNIT - III	8051 Assembly Language Programming	(8)
	Introduction, Structure of Assembly Language, Assembling and Running steps, Assembler directives, Program Counter and ROM memory map, 8051 Data types and Directives. 8051 addressing modes, Instruction set: Arithmetic, Logical, Data transfer, Boolean, Decision making and Branching. subroutine, rules for labels, delay generation simple programs.	
UNIT - IV	8051 Programming	(8)
	 I/O Ports and their functions, Introduction of I/O port programming, pin out diagram of 8051 microcontroller, I/O port pins description & their functions, clock and reset. circuit, I/O port programming in 8051: Bit manipulation, Interfacing of LED and Relay. Introduction to 8051 timers, TMOD, TCON registers, timer modes of operation, 	

- 1 Distinguish microcontrollers based on their features.
- 2 Identify and illustrate the architectural details of 8051 microcontroller.
- 3 Utilize instructions of 8051 microcontroller.
- 4 Design program for data transfer, delay generation, I/O operations and manipulation, arithmetic and logic operations, interfacing of LED, relay.

- 1. The 8051 Microconroller, Kenneth Ayala, 3rd edition, CENGAGE Learning, 2005
- The 8051 Microcontroller and Embedded Systems Using Assembly and C, M. A. Mazidi, J. G. Mazidi, and R. D. McKinlay, 2nd Ed, Pearson Education India, 2007.
- 3 Microprocessor Architecture, Programming and Applications with 8085, Ramesh S.Gaonkar Wiley Eastern Limited- 6th edition, 2013
- 4. Microcontrollers (Theory and Applications), Ajay V. Deshmukh, Tata McGraw Hill, 2005
- 5. An Embedded Software Primer by David E Simon, Addison Wesley, 1999.
- 6. Embedded Systems: Design & applications, S.F. Barrett, Pearson Education India, 2008.
- 7. Introduction to embedded system, K.V. Shibu, 1st edition, McGraw Hill 2009,
- Embedded Microcomputer systems: Real time interfacing, J.W. Valvano, Cengage Learning, 2011.
- 9. Embedded system Design Frank Vahid and Tony Givargis, John Wiley, 2002.

Semester IV Practical V: BEP 243 : Operational amplifier Lab (Hardware)

- 1. Study of designing practical circuits through conceptual, analytical stages
- 2. Understand scientific, analytical skills about Operational amplifier.
- 3. Understand the fundamental and applications of Operational amplifier.
- 4. Familiarize students with waveform generator circuits.

Credits (Total Credits 2)	Semester IV Practical V BEP 243 : Operational amplifier Lab (Hardware)		No. of hours per (30)
	1	Study of op amp characteristics.	
	2	Study the basics of differential amplifiers (DIBO, DIUO,	, SIBO, SIUO).
	3	Study Op-amp comparator and Zero crossing detector.	
	4	Study Op-amp as Inverting amplifier	
	5	Study Op-amp Non-Inverting amplifier.	
	6	Study Op-amp as Integrator and Differentiator.	
	7	Study Op-amp as Adder.	
	8	Study Op-amp as Subtractor.	
	9	Study Schmitt trigger using Op-amp.	
	10	Study Phase shift oscillator using Op-amp.	
	11	Study Astable Multivibrator using Op-amp.	
	12	Study of Instrumentation amplifier.	
	13	Study of Precision Rectifier using Op-amp.	
	14	Study of V to I converter	
	15	Study of Voltage follower	
	16	Study of Monostable Multivibrator	
	17	Wien bridge oscillator using op amp	

18	Study of Function Generator IC566
19	Design and test circuits for generating triangular waveforms using op- amps.
20	Construct and test full-wave precision rectifiers.

- 1 Design practical circuits through conceptual, analytical and simulation stages.
- 2 Develop various applications of Operational amplifier.
- 3 Demonstrate and utilize tools for professional practices.
- 4 Design and explain Various applications of waveform generator circuits.

- 1. Op-amp and -Ramakant Gaikwad, 11th Edition, 2015
- Operational Amplifiers and Linear Integrated Circuits, K. Lal Kishore, Pearson Education, 2016.
- 3. Op Amp Applications, Walt Jung, Pearson education, 2009
- 4. Operational amplifiers and Linear Integrated circuits, R. F. Coughlin and F. F. Driscoll, Pearson Education, 2001.
- 5. Integrated Electronics, J. Millman and C.C. Halkias, Tata McGraw-Hill, 2001.
- 6. Electronic Principals, A. P. Malvino, 6 th Edition, Tata McGraw-Hill, 2003.
- 7. Op Amps for Everyone, Bruce Carter, 2nd Edition, Texas Instrument, 2020

Semester IV Practical VI: BEP 244 : 8051 Microcontroller Lab

(Hardware and Circuit Simulation Software)

- 1. Understand Assembly Programming Fundamentals
- 2. Comprehensive knowledge of the 8051 microcontroller architecture,
- 3. Learn to execute and analyze arithmetic and Logical Operations.
- 4. Familiarize with Embedded Systems Programming

Credits (Total	Semester IV Practical VI		No. of hours per (30)
Credits 2)	BEP 244 : 8051 microcontroller Lab (Hardware and Circuit Simulation Software)		
	1	Study of Simulator I: Assembling and Running Program	
	2	Study of Simulator II: Compiling for errors and warnings, Converting into Hex file and Debugging	-
	3	Use of 'asm', 'obj', lst files	
	4	Executing given program byte by byte	
	5	Use of Assembler directives	
	6	Use of DB (Define byte)	
	7	Accessing 8051 Stack (Push, Pop, Stack and Bank 1 Conflict)	
	8	Study of Addressing Modes	
	9	Study of Arithmetical Operations (Addition and Subtraction)	
	10	Study of Arithmetical Operations (Multiplication and Division)	
	11	Study of Logical Operations (AND, OR, XOR)	
	12	Study of Logical Operations (Compare, Complement, SWAP)	
	13	Use of rotate instructions for Data serialization	
	14	Study of BCD addition	
	15	Packed BCD to ASCII Conversion	
	16	ASCII to Packed BCD Conversion	
	17	Toggle all bits after given time interval.	-

18	Generating Square wave of given frequency at port pin.	
19	Use one of the four ports/ port pin of 8051 and simulate binary counter (8 bit)	
20	Reading input on any port /port pin	

- 1 Apply Assembly Language Concepts
- 2 Demonstrate Microcontroller Programming Skills
- 3 Implement Arithmetic and Logical Operations
- 4 Design and Implement Embedded System Applications

- 1. An Embedded Software Primer by David E Simon, Addison Wesley, 1999.
- 2. Embedded system Design Frank Vahid and Tony Givargis, John Wiley, 2002
- 3. Microcontrollers (Theory and Applications), Ajay V. Deshmukh, Tata McGraw Hill, 2005
- Microprocessor Architecture Programming & applications with 8085, 2002, R.S. Goankar, Prentice Hall.
- 5. Embedded Systems: Architecture, Programming & Design, Raj Kamal, 2008, Tata McGraw Hill
- 6. The 8051 Microcontroller and Embedded Systems Using Assembly and C, M.A.
- 7. Mazidi, J.G. Mazidi, and R.D. McKinlay, 2nd Ed., 2007, Pearson Education India.
- 8. The 8051 Microcontroller, Kenneth Ayala, 3rd edition, CENGAGE Learning, 2005
- 9. 8051 microcontrollers, Satish Shah, 2010, Oxford University Press.
- 10. Embedded Microcomputer systems: Real time interfacing, J.W. Valvano 2011, Cengage Learning
- 11. Microcontrollers (Theory and Applications), Ajay V. Deshmukh, Tata McGraw Hill, 2005

<mark>Minor Syllabus</mark>

Theory					Practical			
Cource	Cource	Lecture	Credits	Cource	Cource	Cource	Lecture	Credits
Title	Code	per			Title	Code	per	
		week					week	
Wave-	BET	2	2	Practical	Minor	BEP	2	2
Shaping	245			Ι	Practical	246		
Circuits					Ι			
and								
Timer IC								

Cource Structure for Bsc II (Semester IV)

Structure and Title of Courses of B. Sc. Course:

* B. Sc. II Semester III *

Course Number	Course Code	Course Name
V	BET245	Basics of 8051 microcontroller
Lab II	BEP246	Minor Practical II:8051 microcontroller Lab (Hardware and Circuit Simulation Software)

Course VIII: BET 245 : Fundamentals of 8051 Microcontroller

Course Objectives: Student will able to...

- 1. Understand the fundamental components and organization of microcomputers
- 2. Study the architectural features of the 8051 microcontroller.
- 3. Study the instruction set of the 8051 microcontroller.
- 4. Develop Practical Programming Skills:

Credits	SEMESTER-IV	No. of hours
(Total	BET 245	per unit/credits
Credits 2)	Basics of 8051 microcontroller	
UNIT - I	Introduction and Overview of 8051 family	(08)
	 A) Microcomputer Organization: Introduction, Block Diagram, Elements of Microcomputer. (Buses, Microprocessor, memory, I/O devices), Different types of buses: address, Data, and control bus, General block diagram of microprocessor and microcontroller, Comparison of Microprocessors and Microcontrollers. B) Types of architectures- Harvard and Von- Neumann, Selection 	
	 factors of microcontroller(Architecture type, speed, Word size, instruction set, memory, and I/O capability) C) 8051 family members and its comparison -8052, 8031, 8751, AT89C51, DS89C4x0 	
UNIT - II	8051 Architecture	(8)
	 A) 8051 Architecture: Features, Architectural block diagram, Pin description, Accumulator and B register, PSW, Stack, I/O ports, Timers/Counters, Interrupts B) Memory Organization and Programming model: Internal RAM and ROM C) Special Features of 8051: Power saving options- idle and power down mode, clock and reset. 	
UNIT - III	Instruction set and programming	(7)

	A) Instruction format and addressing modes, Data transfer instructions, Logical and rotate instructions, Arithmetic	
	instructions, Jump and call instructions, subroutine, delay generation simple programs.	
UNIT -	Programming of 8051	(7)
IV		
	A) Parallel Port- I/O port Structure and its Programming:	
	Interfacing of LED, Relay	
	B) Timer/Counter programming: 8051 timers, TMOD, TCON	
	registers, timer modes of operation, programming timers 0	
	and 1 (8 bit and 16 bit mode)	

- 1 Apply Microcomputer Concepts
- 2 Analyze 8051 Architecture and Features
- 3 Execute assembly language programs utilizing the 8051 instruction set
- 4 Design and Implement Embedded Systems Solutions

- 1. The 8051 Microconroller, Kenneth Ayala, 3rd edition, CENGAGE Learning, 2005
- The 8051 Microcontroller and Embedded Systems Using Assembly and C, M. A. Mazidi, J. G. Mazidi, and R. D. McKinlay, 2nd Ed, Pearson Education India, 2007.
- 3 Microprocessor Architecture, Programming and Applications with 8085, Ramesh S.Gaonkar Wiley Eastern Limited- 6th edition, 2013
- 4. Microcontrollers (Theory and Applications), Ajay V. Deshmukh, Tata McGraw Hill, 2005
- 5. An Embedded Software Primer by David E Simon, Addison Wesley, 1999.
- 6. Embedded Systems: Design & applications, S.F. Barrett, Pearson Education India, 2008.
- 7. Introduction to embedded system, K.V. Shibu, 1st edition, McGraw Hill 2009,
- Embedded Microcomputer systems: Real time interfacing, J.W. Valvano, Cengage Learning, 2011.
- 9. Embedded system Design Frank Vahid and Tony Givargis, John Wiley, 2002.

Semester IV Lab II: BEP 246 : 8051 Microcontroller Lab

(Hardware and Circuit Simulation Software)

Course Objectives: Students will able to...

- 1 Familiarize with Microcontroller Development Tools
- 2 Develop skills in writing efficient assembly code
- 3 Develop Algorithmic Skills
- 4 Provide practical experience in interfacing the 8051 microcontroller with external peripherals.

5.

Credits		Semester IV Lab II	No. of hours per (30)
(Total	BE	P 246 : 8051 microcontroller Lab (Hardware and Circuit	per (50)
Credits	Sim	nulation Software)	
2)			
	1	Study of Microcontroller Lab Tools Keil uVision and Flash	
		Magic, proteus.	
	2	Arithmetic operations.	-
	3	Logical Operations.	-
	4	Boolean and bit manipulation Operations.	-
	5	Conditional call and return instructions	-
	6	Code conversion programs – BCD to ASCII, Hexa decimal	-
	_	to and Decimal to Hexa.	-
	7	Move a block of data from one internal memory location to other.	
	8	Exchange a block of data from one internal memory location to other.	
	9	Program to arrange numbers in ascending/ descending order.	
	10	Program to find maximum value in an array.	
	11	Program for Sorting of data a) Ascending order b) Descending order	
	12	Use of timer 0 in mode 1 and 2 to generate time delay.	
	13	Use of timer 1 in mode 1 and 2 to generate time delay.	
	14	Program to toggle all the bits of port 1 continuously by sending the values XX H and YY H using Call and return instructions.	

15	Program to generate Square wave and generate triangular wave.	
16	Program to generate triangular wave.	
17	Interfacing of LED/RELAY with 8051 microcontroller (Simulation using proteus / Hardware)	
18	Stepper motor interface.	
19	Interface of DC motor for direction and speed control using PWM.	
20	Interface Alphanumerical LCD panel.	

- 1 Utilize Microcontroller Tools Effectively
- 2 Implement Assembly Language Programming
- 3 Design and Execute Complex Algorithms
- 4 Interface Microcontroller with External Devices

- 1. Electronic Communications, D. Roddy and J. Coolen, Pearson Education India. 4th edition 2008.
- 2. Electronic Communication systems, G. Kennedy, Tata McGraw Hill, 5th edition 2011
- 3. Principles of Electronics communication systems, Frenzel, McGraw Hill 3rdedition, 2012.
- 4. Communication Systems, S. Haykin, 4th Edition, 2006, Wiley India
- A Text Book of Wave-Shaping Circuits and 555 Timers-R. S. Sedha (S. Chand & Co), Multicolour Edition 3/e, 2018.
- 6. A Course in Circuit Analysis- M.L. Soni, 4th Edition, Dhanpat RaiPublications, 2016.
- 7. Linear Circuits- M. E. Valkenburg an Kinariwala, 1982
- 8. Basic Electronics- Bernard Grob, 8th Edition 2010

Rayat Shikshan Sanstha's Yashavantrao Chavan Institute of Science, Satara (Autonomous) Department of Electronics Vocational Skill Course Semester –IV Course Code: BEPVSC 2 Paper Name: Advanced Digital Tactics for Electronics Enterprises

Course Objectives: Student will able to...

- 1 Develop comprehensive skills in Google Workspace Applications.
- 2 Learn to organize, store, and manage information effectively using Google apps.
- 3 Acquire proficiency in Collaboration and Communication Skills.
- 4 Understand and implement best practices for Security and Privacy Awareness:

Credits		Semester III	No. of
(Total			hours per
Credits	P	ractical Paper – BEPVSC 2: Advanced Digital Tactics for	(30)
2)		Electronics Enterprises	
	1	Gmail:	
		• Create and manage email filters and labels.	
		• Explore advanced search features for efficient email management	gement.
		• Use Gmail offline mode and keyboard shortcuts.	
	2	Google News:	
		• Customize news preferences and topics of interest.	
		• Explore local and global news coverage.	
		• Set up news alerts for specific keywords or topics.	
	3	Google Meet:	
		• Schedule and host virtual meetings with colleagues or clas	smates.
		• Use Google Meet features like screen sharing and recordin	g meetings.
		• Explore integration with Google Calendar for meeting sch	eduling.
	4	Google Chat:	
		• Set up group chats and direct messaging for team commun	ication.
		• Explore chat rooms and collaboration features.	
		• Use emojis, reactions, and file sharing in Google Chat.	
	5	Google Drive:	
		• Create, upload, and organize files and folders in Google D	rive.
		• Collaborate on documents, spreadsheets, and presentations	in real-time.
		• Explore version history and file sharing settings.	
	6	Google Shopping:	

	• Research products, compare prices, and read reviews.
	Create and manage shopping lists.
	• Explore personalized recommendations and deals.
7	Google Calendar:
	• Schedule events, meetings, and appointments.
	• Set up event reminders and notifications.
	• Share calendars and coordinate schedules with others.
8	Google Maps:
	• Use Google Maps for navigation and directions.
	• Explore Street View and satellite imagery features.
	• Contribute reviews, photos, and updates to Google Maps.
9	Google Contacts:
	Manage and organize contact lists.
	• Sync contacts across devices and platforms.
	• Explore contact groups and integration with other Google services.
10	Google Photos:
	• Upload, organize, and edit photos and videos.
	• Create albums and share content with others.
	• Explore automated photo backup and storage options.
11	Google Classroom:
	• Set up virtual classrooms, create assignments, and manage student
	submissions.
	• Use Google Classroom for online learning and collaboration.
	• Explore grading and feedback features.
12	Google Password Manager:
	• Store and manage passwords securely.
	• Generate and use strong, unique passwords for accounts.
	• Explore password protection and security settings.
13	Google Play Store:
	• Discover and download apps, games, and digital content.
	• Manage app updates and subscriptions.
	• Explore Play Store settings and preferences.
14	Google Finance:
	• Track stock market performance and financial news.
	Create and manage stock portfolios.
	• Explore financial charts and investment tools.
15	Google Blogger:
	• Create and manage blogs using Google's blogging platform.
	• Customize blog themes and layouts.
	• Explore blogging tools and analytics.
16	Google Ads:

 Set up and manage Google Ads campaigns. Explore ad targeting options and analytics. Monitor ad performance and optimize campaigns. 	
Monitor ad performance and optimize campaigns.	
17 Google Travel:	
• Plan trips, book flights, hotels, and transportation.	
Explore destination guides and travel recommendation	ations.
Access travel itineraries and reservations.	
18 Google Arts and Culture:	
Explore virtual tours of museums, landmarks, and	cultural sites.
• Discover art collections and historical artifacts.	
Use augmented reality (AR) features for immersive	ve experiences.
19 Google Earth:	
• Explore 3D maps and satellite imagery of Earth.	
Discover geographic information and landmarks.	
Use Google Earth for educational and research pu	rposes.
20 Google Translate:	
Translate text, websites, and documents between 1	languages.
• Use voice and image translation features.	
• Explore language learning tools and resources.	

- 1 Demonstrate proficiency in using Gmail, Google Drive, Google Calendar, and other Google apps for creating, organizing, and sharing information efficiently.
- 2 Communicate effectively using Google Chat, conduct virtual meetings with Google Meet, and manage collaborative projects in Google Workspace.
- 3 Demonstrate competence in organizing and managing information using Google Drive, Google Photos, and Google Contacts, ensuring accessibility and data integrity..
- 4 Apply essential skills for security practices within Google apps, including password management, privacy settings, and data protection measures, contributing to a secure digital environment.

- 1 Smith, Jane. Google Workspace Essentials: Mastering Gmail, Drive, Calendar, and Meet. Pearson, 2021.
- 2 Johnson, Mark. Google Apps for Work: The Ultimate Guide to Google's Productivity Tools. O'Reilly Media, 2017.

- 3 Patel, Ravi. Google Drive Mastery: A Beginner's Guide to Managing Files on Google Drive. Packt Publishing, 2019.
- 4 Lee, Michelle. Google Meet for Professionals: A Comprehensive Guide to Video Conferencing with Google Meet. Wiley, 2020.
- 5 Williams, David. Google Chat and Collaboration: A Practical Guide to Streamline Communication and Collaboration. Springer, 2018.
- 6 Thompson, Laura. Google Classroom in the Classroom: A Teacher's Guide to Online Learning with Google Classroom. McGraw-Hill, 2019.
- 7 Anderson, Michael. Google Workspace Security and Compliance: A Comprehensive Guide to Data Security in Google Apps. Addison-Wesley Professional, 2018.
- 8 Garcia, Maria. Google Photos: The Complete Guide to Managing, Organizing, and Sharing Your Photos Online. Peachpit Press, 2020.
- 9 Brown, Christopher. Google Calendar Mastery: A Step-by-Step Guide to Effective Time Management with Google Calendar. Packt Publishing, 2016.
- 10 Roberts, Steven. Google Apps Administration Handbook. O'Reilly Media, 2015.

Rayat Shikshan Sanstha's

Yashavantrao Chavan Institute of Science, Satara (Autonomous)

Page 46

Department of Electronics

Skill Enhancement Course

Semester –IV

Course Code: BEPSEC3

Paper Name: Advance Scientific programming skills for Electronics

Course Objectives: Student will able to...

- 1 Understand Data Structures
- 2 Develop skills in File Handling Proficiency
- 3 Implementing Error Handling techniques
- 4 Learn and Apply Advanced Programming Techniques

Credits (Total		Semester III Practical Paper – BEPSEC 3: Advance Scientific	No. of
Credits		programming skills for Electronics	hours per (30)
2)		programming skins for Electronics	(30)
_)	1	Use nested structures to represent complex data structures.	
	2	Implement programs to read from and write to files using operations (fopen, fclose, fread, fwrite).	g standard file
	3	Create a program to copy the contents of one file to another	
	4	Implement error handling in file operations using perror and	l errno.
	5	Implement basic operations (insertion, deletion, traversal) or lists.	n singly linked
	6	Write programs for stack operations (push, pop) using arralists.	nys and linked
	7	Implement queue operations (enqueue, dequeue) using arra lists.	ays and linked
	8	Implement sorting algorithms such as bubble sort, insertion sort, and quicksort.	sort, selection
	9	Write functions to perform linear search and binary search of	on arrays.

10	Implement hashing techniques (open addressing, chaining) for managing collisions.
11	Write recursive functions to calculate factorial and Fibonacci series.
12	Implement recursive functions to solve problems like Tower of Hanoi and generating permutations.
13	Write a program that accepts command line arguments and performs operations based on those arguments.
14	Use preprocessor directives (#define, #ifdef, #ifndef, #include) to manage constants and header files.
15	Create a multi-file program with separate modules for different functionalities (header files, source files).
16	Write a Makefile to automate the compilation and linking process of a C project.
17	Implement error handling using errno and perror.
18	Use assertions (assert macro) for runtime error checking.
19	Debug C programs using gdb or other debugging tools.
20	Implement exception handling using setjmp and longjmp for non-local jumps.

- 1 Design and Implement Complex Data Structures
- 2 Apply practical skills in File Management
- 3 Develop competence in handling errors and exceptions during file operations
- 4 Demonstrate proficiency in implementing and using various data structures, sorting algorithms, and recursive functions to solve complex problems

- 1 Weiss, Mark Allen. Data Structures and Algorithm Analysis in C. Pearson, 2006.
- 2 King, K.N. *C Programming: A Modern Approach*. 2nd ed., W.W. Norton & Company, 2008.
- Kernighan, Brian W., and Dennis M. Ritchie. *The C Programming Language*. 2nd ed.,
 Prentice Hall, 1988. (Reprinted in 2000)

- 4 Hanson, David R. *C Interfaces and Implementations: Techniques for Creating Reusable Software*. Addison-Wesley Professional, 2002.
- 5 Griffiths, David, and Dawn Griffiths. *Head First C.* O'Reilly Media, 2012.
- 6 Stevens, Richard W., and Stephen A. Rago. *Advanced Programming in the UNIX Environment*. 3rd ed., Addison-Wesley Professional, 2013.
- Sedgewick, Robert. Algorithms in C, Parts 1-4: Fundamentals, Data Structures, Sorting,
 Searching. 3rd ed., Addison-Wesley Professional, 2008.
- 8 Carrier, Brian. File System Forensic Analysis. Addison-Wesley Professional, 2005.
- 9 Love, Robert. *Linux System Programming: Talking Directly to the Kernel and C Library*. O'Reilly Media, 2013.
- Reese, Richard. Understanding and Using C Pointers: Core Techniques for Memory Management. O'Reilly Media, 2013.